Thanos Tzounopoulos, PhD

Professor and Vice Chair of Research Otolaryngology, Director Pittsburgh Hearing Research Center


3017 Biomedical Science Tower 3
Website >


PhD, Vollum Institute (1998)


Molecular, cellular and system mechanisms underlying normal and pathological hearing

Research Summary

We are combining electrophysiological, imaging and behavioral techniques to investigate the cellular, molecular and systems mechanisms underlying normal and pathological auditory processing. Our recent studies are focusing on the role of zinc as a novel neurotransmitter in the brain and its role on auditory processing. Another area of our current research focuses on tinnitus and its underlying cellular and molecular mechanisms. Based on our recent findings on the molecular mechanisms underlying the induction of tinnitus and in collaboration with the medicinal chemist Dr. Peter Wipf of the University of Pittsburgh, we are developing and testing novel specific Kv7.2/3 (KCNQ2/3) activators for preventing the triggering of tinnitus. Moreover, our current tinnitus-related studies are aimed towards understanding the neuronal mechanisms that underlie the maintenance of tinnitus.

Summer Undergraduate Research Program



Anderson CT, Kumar M, Xiong S, Tzounopoulos T (2017). Cell-specific Gain Modulation by Synaptically Released Zinc in Cortical Circuits of Audition. Elife. 2017 Sep 9;6. pii: e29893. doi: 10.7554/eLife.29893.

Ankur Joshi, Bopanna I. Kalappa, Charles T. Anderson and Thanos Tzounopoulos (2016). Cell-Specific Cholinergic Modulation of Excitability of Layer 5B Principal Neurons in Mouse Auditory Cortex. Journal of Neuroscience, 2016 Aug 10;36(32):8487-99.

Kumar M, Reed N, Liu R, Aizenman E, Wipf P, Tzounopoulos T (2016). Synthesis and Evaluation of Potent KCNQ2/3-specific Channel Activators. Mol Pharmacol. 2016 Mar 22. pii: mol.115.103200.

Li S., Kalappa B.I, and Tzounopoulos T (2015) Noise-Induced Plasticity of KCNQ2/3 and HCN Channels Underlies Vulnerability and Resilience to Tinnitus. Elife 2015;10.7554/eLife.07242. Anderson C.T, Radford R.J, Zatsrow M.L, Zhang D.Y, Apfel U, Lippard S.J, and Tzounopoulos T (2015).

Potent KCNQ2/3-specific channel activator suppresses in vivo epileptic activity and prevents the development of tinnitus. Journal of Neuroscience, 2015 Jun 10;35(23):8829-42.

Modulation of Extrasynaptic NMDA Receptors by Synaptic and Tonic Zinc. Proc Natl Acad Sci USA (PNAS), 2015 May 6. pii: 201503348. Bopanna I. Kalappa, Heun Soh, Kevin Duignan, Takeru Furuya, Scott Edwards, Anastassios V.Tzingounis and Thanos Tzounopoulos (2015).